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A Landau theory for surface enhanced ordering in free-standing smectic-A films is described, based on a
generalization of de Gennes’s “presmectic” model to systems which undergo a first-order smectic-isotropic
transition in bulk. As found in related work on phase transitions in thin films, the system exhibits three phases,
an isotropic liquid, a bulk-like ordered(smectic-A) phase, and a surface-ordered(“quasismectic”) phase. Over
much of its range, the temperature-thickness boundary between the bulk-ordered and surface-ordered phases is
effectively characterized by a power-law relation similar to those observed for layer-thinning transitions in
overheated free-standing smectic-A films.
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I. INTRODUCTION

Layer-thinning transitions in overheated free-standing
films of certain smectic-A liquid crystals were discovered
nearly ten years ago by Huanget al. [1–3]. Several mean-
field theories for these transitions have been described
[4–10]. Common features of all these theories are the exis-
tence of enhanced smectic-A ordering at the free surfaces of
a film and the fact that thinning occurs when the smectic
ordering in the interior of a film becomes sufficiently weak.
Apart from details of the models used, the main differences
between the various theories are in the description of the
kinetic pathways by which layer thinning occurs, i.e.,
whether this is by uniform squeezing-out of the melted inte-
rior [4–8] or via nucleation of dislocation loops between
domains of differing thickness[9,10] (a scenario supported
by experimental studies[11,12]). Many of the previous the-
oretical studies of layer-thinning transitions[7–11,13] have
been based on de Gennes’ model of “presmectic” ordering in
thin films [14]. Up to now, all of the latter studies use an
expansion of the bulk free-energy density up to at most quar-
tic order in the smectic order parameter, which is more ap-
propriate to a system undergoing asecond-ordersmectic-
nematic phase transition. In contrast, the majority of
experimental studies of layer-thinning transitions have been
done on systems exhibiting first-order smectic-isotropic tran-
sitions in bulk[1–3,11,12]. In this paper we extend our pre-
vious studies[8,10], based on a modified version of de
Gennes’ presmectic theory which included a quartic term in
the bulk free-energy density and a quadratic(rather than lin-
ear) term in the surface part of the free energy, by adding a
sixth-order term to the bulk free-energy density so as to be
applicable to systems with first-order bulk transitions. Here
we limit the analysis to determining the different phases and
their “equilibrium” boundaries exhibited by a thin presmectic
film in the absence of layer strain effects.

The theory discussed here is closely related to one de-
scribed a few years ago by Weinstein and Safran[15] in the
context of freezing transitions in confined liquid films. Ear-
lier work employing a similar formalism[16,17] examined

confinement effects on the first-order nematic-isotropic tran-
sition. The study in Ref.[17] is important for relating the
predicted thin-film phase boundaries to the interplay of cap-
illary condensation and wetting phenomena. In the presence
of surface-enhanced ordering, these studies all find that three
types of phases can occur in a confined film in a range of
temperaturesT above the bulk transition temperature, de-
notedTx: (1) a mainly isotropic state with little or no order-
ing at both the interfaces and interior of the film;(2) a “bulk-
ordered” state which exhibits significant ordering throughout
the film; and(3) a “surface-ordered” state in which the film
interfaces are wet by the ordered phase while the middle of
the film is very weakly ordered. In the context of free-
standing smectic films, the latter has been called a “quasis-
mectic” state[4], although this behavior probably is rather
generic for a confined film with a sufficient degree of
surface-enhanced ordering. The transition between states(1)
and (2) in a film of finite thicknessL is the analog of capil-
lary condensation between gas-like and liquid-like states in a
confined geometry[18]. The phase boundary between these
states, in terms of temperature and thickness, is described
asymptotically by the Kelvin relationL~DT−1 where DT
;T−Tx. For sufficiently smallDT, the surface-ordered phase
(3) becomes more stable than the isotropic phase and the
(1)–(2) transition is preempted by the(2)–(3) transition. Al-
though asymptoticallythis phase boundary also obeys the
Kelvin relation, over a wide range we find that it is charac-
terized by an effective power lawL~DT−n with n as small as
0.76, which is consistent with theL–T relations observed in
layer-thinning transitions[1–3,11]. This finding, along with
demonstrating the “universal” character of the quasismectic
state and its connections to other confinement-induced tran-
sitions, are the main points of this paper.

II. MODEL

As in previous work[7–11,13] employing de Gennes’
presmectic model[14], a free-standing smectic-A film is
modeled by an infinite liquid slab parallel to thesx,yd plane
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with free liquid-vapor interfaces atz=±L /2. The degree of
smectic order in the film is described by the order parameter
cszdù0, representing the amplitude of periodic density
modulations in the normalz direction. The model neglects
any explicit coupling to a nematic-like orientational order
parameter, on the assumption[11] that any such order is fully
saturated as soon as it develops. As stated by de Gennes[14],
such a model should be applicable to systems exhibiting ei-
ther a nematic or isotropic phase in bulk. As mentioned in
Sec. I, here we will neglect strain effects associated with
local distortions of the smectic layer thickness. This is justi-
fied by the expectation, indicated by previous work[7,8,14],
that the minima in the free energy lie close to states of zero
strain. The Landau–de Gennes free energy per unit area of
the film, accounting for the effects of smectic ordering, is
then given by

F =E
−L/2

L/2

dzF fbscd +
C

2
Sdc

dz
D2G + fsfcsL/2dg + fsfcs− L/2dg.

s1d

As appropriate for a system undergoing a first-order smectic-
isotropic transition, the bulk free-energy densityfbscd is
given by [19]:

fbscd =
r

2
c2 −

b

4
c4 +

g

6
c6, s2d

whereb andg are positive constants. As usual, the variabler
is taken to be linear in the relative temperature difference,
i.e., r ~T−T0, whereT0 is a supercooling spinodal tempera-
ture. In the following, we will often simply callr the “tem-
perature.” Our model for the contributionfsscd to the free
energy, which accounts for the smectic ordering effects of
the film surfaces on adjacent molecules, is[8,10]:

fsscd =
gs

2
c2, s3d

wheregs is a surface coupling constant. This model neglects
a possible contribution tofs in which is linear inc [8,13]. By
analogy with related studies, e.g., on Ising-model surfaces
[20], a linear term infs would be associated withexternal
fields such as due to confining walls acting on the film, ex-
pected to be absent in a free-standing film, while the qua-
dratic form adopted in Eq.(3) accounts for the effects of
modified intermolecular pair interactions(e.g., “missing
neighbors”) near the surface. In other contexts[20], gs has
been called the “surface-enhancement field,” which favors
local ordering at the interfaces whengs,0, a condition
which is assumed from now on. The form offs in Eq. (3) is
simpler than that used in Ref.[15], which also neglected the
linear term. Along with the neglect of nematic ordering terms
elsewhere inF, the form of the surface free energy assumes
that any explicit orientational anchoring effects can be elimi-
nated in terms of the smectic order parameterc. This is
reasonable under the conditions that molecules at the surface
remain homeotropically aligned(i.e., normal to the surface),
compatible with smectic-A ordering parallel to the surface
[9,14]. By appropriate scaling ofF, c, andz, the coefficients

b, g, andC in Eqs.(1) and(2) can be set equal to unity[21],
as adopted from now on. This leaves the model depending on
two parameters, the temperature variabler and the surface
coupling constantgs.

Euler-Lagrange equations determining the order-
parameter profilecszd along with the surface valuecs±L /2d
can be obtained by functional minimization of Eq.(1). We
will omit these equations here, and simply state that on using
these equations and the symmetry conditioncs−zd=cszd,
Eq. (1) becomes[16,17]:

F = fbsc0dL + 2fsscsd + 2Î2E
c0

cs

dc ffbscd − fbsc0dg1/2,

s4d

wherec0;csz=0d is the order parameter in the midplane of
the film while cs;csz= ±L /2d is the order parameter at the
film surfaces. In this form,F can be considered a function of
the three variablesc0, cs, and film thicknessL, for given
model parametersr andgs. Partial minimization ofF in Eq.
(4) with respect tocs and c0, respectively, using Eq.(3),
yields the relations

Î2 ffbscsd − fbsc0dg1/2 = − gscs, s5d

and

L = Gsc0d, s6ad

where

Gsc0d = Î2E
c0

cs dc

ffbscd − fbsc0dg1/2. s6bd

These relations can also be obtained from the original Euler-
Lagrange equations forcszd. If one considers Eq.(5) as de-
termining the surface order parametercs in terms of the mid-
film value c0, then Eqs.(6a) and (6b) determinec0 for a
given thicknessL, wherecs=cssc0d in the upper limit of the
integral defining the functionGsc0d in Eq. (6b). In view of
the latter equations, thetotal derivative ofF with respect to
the film thicknessL (at fixed r andgs) is given by

dF

dL
= S ]F

]L
D

c0,cs

= fbsc0d. s7d

An alternative expression for the equilibrium free energy
which can be obtained using the Euler-Lagrange equations
for cszd, following an approach described in Ref.[8], is

F =E
0

L/2

dzF2fbscd − c
]fbscd

]c
G + 2fsscsd − cs

]fsscsd
]cs

.

s8d

Using the forms offb and fs in Eqs.(2) and(3), this becomes

F =E
0

L/2

dzc4szdf 1
2 − 2

3c2szdg. s9d

Although not generally as useful as Eq.(4), this indicates
that the free energyF is necessarily positive ifcszd,Î3/4
for all z.
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Before discussing the solutions of Eqs.(5), (6a), and(6b),
we point out some relevant features of the bulk free-energy
density fbscd. Close to the bulk isotropic-smectic transition,
this has a characteristic “double well” shape, having one
minimum atc=0 and another atc=c+, where(for b=g=1):

c+
2 = s1 +Î1 − 4rd/2. s10d

The bulk phase transition takes place when the free-energy
minima at c=0 and c+ are equal, which occurs when the
temperaturer =3/16; rx, in which casec+=s3/4d1/2;cx.
For r . rx, the global minimum offbscd is at c=0, but the
metastable minimum atc+ persists up to a superheating spin-
odal temperaturer* =1/4. In therange rx, r , r* , there is
another positive value ofc, denotedc−, which satisfies
fbsc−d= fbsc+d. This is given by

c−
2 = s1 − 2Î1 − 4rd/2, s11d

which approaches the isotropic valuec=0 whenr → rx.

III. SOLUTION OF THEORY

Due to the absence of a linear term infsscd, Eq.(3), it can
be shown that the theory outlined above always has a trivial
solution cszd=0 for all z [8], corresponding to an isotropic
liquid state(denoted I) of the film with no smectic ordering
whatsoever. According to any of the Eqs.(1), (4), or (9), the
free energyF;FI of this film state is zero, reflecting the fact
that F only accounts for the effects of smectic ordering. In
reality, such an isotropic free-standing film also exhibits a
continuous density variation between vapor and liquid, and
hence, has a positive free energy per unit area in excess of
that in the complete absence of the film, approximately equal
to 2gv,I wheregv,I is the (isotropic) liquid-vapor interfacial
tension. This renders such a film metastable[22,23]. In ad-
dition, such an isotropic film should be unstable with respect
to rupturing due to capillary-wave fluctuations[24]. It is pre-
sumed that smectic ordering diminishes the fluctuations
which cause that instability.

In the overheated temperature regimer . rx, nontrivial so-
lutions forcszd exist provided the surface-enhancement field
gs,0 (in practice, as shown later, forgs less than some finite
negative threshold). As in the closely related work of Ref.
[15], for rx, r , r* , these solutions fall into two categories
which can be distinguished by the values of the surface and
midfilm order parameterscs and c0: (a) cs.c+ and c0
<c+, representing a bulk-ordered state(denotedB) through-
out the film; (b) cs.c+ but c0<0, representing a surface-
ordered state(denotedS) in which the interfaces are wet by
the ordered phase while the middle of the film is practically
disordered.

To determine the nontrivial solutions, we begin with Eq.
(5), which clearly shows that such solutions are obtained
only if gs,0. In practice, the solutions of Eq.(5) are found
by squaring it, which leads[using fb as given by Eq.(2)] to
a cubic equation for the variablecs

2 in terms ofc0, whose
roots are obtained analytically. The nature of those roots can
be seen graphically, on plotting both sides of Eq.(5). A rep-
resentative case is shown in Fig. 1, in the temperature range

rx, r , r* and for 0,c0,c−. For the values ofr and gs
considered in this case, the graph exhibits three roots forcs.
For the samer and for sufficiently larger(smaller) values of
ugsu, only the largest(smallest) root for cs remains. However,
it can be shown that the two smaller roots forcs in Fig. 1 as
well as the single smallcs root obtained for small values of
ugsu correspond to unstable states. This is because those roots
obeycs,c+øcx=Î3/4, and hence,cszdøcx for all z, giv-
ing positive values of the film free energyF (hence, unstable
relative to the isotropic state) according to the argument fol-
lowing Eq. (9). When the temperaturer . r* , triple roots for
the surface order parametercs can also occur for appropriate
values of the surface coupling constantgs and sufficiently
small c0, but one can again show that only the largest of
such roots produces a stable film state havingF,0.

Due to the integrals involvingffbscd− fbsc0dg1/2 in Eqs.
(4) and (6b), solutions withc−,c0,c+ and cs.c+ are
forbidden. Whenc0.c+, graphical constructions analogous
to that in Fig. 1 show that there is only one mathematical
root for cs.

Having determined the unique root forcs for a given
midfilm order parameterc0, the solution of the theory is
completed by solving Eqs.(6a) and (6b) to obtainc0 for a
given value ofL. Under the conditions that, for allc0, the
corresponding surface order parameter satisfiescs.c+, the
functionGsc0d has the typical behavior forrx, r , r* shown
by the solid curve in Fig. 2. It diverges logarithmically as
c0→0, c0→c− from below andc0→c+ from above[25],
and, as mentioned earlier, is undefined forc−,c0,c+. For
sufficiently small thicknessL, Fig. 2 and Eq.(6a) indicate
that the only nontrivial solution hasc0.c+, corresponding
to a bulk-ordered state. This phase is stable with respect to
the isotropic state if its free energyF;FB satisfiesFB,0. At
larger values ofL, greater than the minimum inGsc0d oc-
curring for 0,c0,c−, there are three possible nontrivial
solutions for the mid-film order parameterc0. However, it
can be shown that the intermediate solution(on the branch of
Gsc0d which diverges asc0→c−) always has a higher free
energyF than both of the other two solutions. The solution
with c0.c+ describes, as before, a bulk-ordered phase,
while that with c0<0 corresponds to a surface-ordered

FIG. 1. Schematic graphical solution of Eq.(5) for rx, r , r*

and 0,c0,c−. The solid curve is the functionÎ2ffbscd− fbsc0dg
while the dashed straight line represents the function −gsc for a
value of the parametergs,0 which produces three roots of Eq.(5).
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phase. The free energies of these phases must be compared
with each other and with the isotropic phaseFI =0 to deter-
mine which phase is most stable. It follows from Eq.(7) that,
sincefbsc+d. fbs0d in the overheated regime, the free energy
of the bulk-ordered state increases with thicknessL more
rapidly than that of the surface-ordered state, and hence, the
latter is always more stable than the former at sufficiently
largeL. Physically, this just reflects the increasing bulk free-
energy cost associated with the termfbsc0dL< fbsc+dL in
Eq. (4).

At temperaturesr greater than the spinodal valuer* , the
“forbidden” zonec−,c0,c+ vanishes. For a narrow range
r . r* , a remnant of the previous behavior remains, produc-
ing a finite maximum inGsc0d as shown by the dashed curve
in Fig. 2. This persists up to some temperature denotedrc.
The value ofrc and height of the maximum inGsc0d are only
weakly dependent on the values of the surface coupling con-
stantgs which yield this behavior. In this case, a first-order
transition between bulk- and surface-ordered phases still oc-
curs at a value ofL between the minimum and maximum in
Gsc0d. For r . rc, the maximum inGsc0d disappears and this
function decreases monotonically with increasingc0. In this
case there is no distinction between bulk-ordered and
surface-ordered phases. The film critical point at some tem-
peraturerc has been noted in previous work[16,17].

We remark on some differences from the behavior of the
liquid-crystal models studied in Refs.[16,17], which were
based on a surface free energyfsscd=gsc

2/2−hsc, with both
gs,hsù0. These models do not exhibit a completely isotropic
state withcszd=0 for all z. Rather, all film states have some
degree of surface-induced ordering. The analog of the
present isotropic to surface-ordered transition(the boundary-
layer transition of Ref.[16]) is one is which the surface order
parametercs undergoes a large jump between two nonzero
values while the midfilm order parameterc0<0 changes
little. In Sheng’s model[16], which hasgs=0, this transition
disappears whenhs becomes sufficiently large. In contrast, in
the present model this transition persists for all values ofugsu

greater than a minimal value 0.179 36, as discussed in the
following subsection.

A. Asymptotic behavior: Surface-ordered phase

It turns out that many qualitative as well as quantitative
features of the film phase behavior can be deduced from
analytic studies of the asymptotic limitL→`. In this limit,
the two surfaces of the film are decoupled. First, considering
the surface-ordered state in a thin film, we will show that it is
closely related to the wetting of a single surface(here repre-
senting a liquid vapor interface) in a semi-infinite system
[16–18]. This connection follows by considering the condi-
tions for existence of the surface-ordered phase at arbitrarily
large thicknessL. Due to the logarithmic divergence of
Gsc0d asc0→0, the asymptotic solution of Eq.(6a) is [17]:

c0 < e−ÎrL/2. s12d

On neglecting exponentially small terms, as well as using the
fact thatfbsc0d~c0

2 for smallc0, the termfbsc0dL in the free
energyFS of the surface-ordered phase obtained from Eq.(4)
can be neglected and that free energy becomes

FSsL → `d = 2fsscsd + 2Î2E
0

cs

dc fb
1/2scd ; 2gv,S.

s13d

Here we have indicated that, in this limit,FS is precisely
twice the (smectic-ordering contribution to the) interfacial
tension gv,S between “vapor” and a semi-infinitesurface-
orderedisotropic liquid. Under the same approximation, i.e.,
settingc0=0, Eq.(5) for cs reduces to that for a semi-infinite
isotropic liquid. The nontrivial solution of this equation for
cs.c+ is

cs = cxh1 + f1 + sgs
2 − rd/rxg1/2j1/2. s14d

Notice this requires thatgs
2. r −rx. Such a surface-ordered

state in the semi-infinite system could still be metastable
relative to the completely isotropic state(without any surface
ordering). To check this we need the free energy from Eq.
(13), which can be found analytically in the current model
[28]:

gv,S=
gs

2
cs

2 +
1

4Fgsscx
2 − cs

2d + Îrcx
2

+ Î3sr − rxdlnScs
2 − cx

2 − Î3gs

Î3r − cx
2 DG , s15d

with surface order parametercs given by Eq.(14). In this
asymptotic limit, the transition between isotropic and
surface-ordered states occurs whengv,S=0. In the particular
case ofr =rx, i.e., at the bulk transition temperature, the last
two equations give(noting thatgs,0):

gv,Ssr = rxd = 3
8sgs − 2gs

2/Î3 +Î3/8d. s16d

The negative root forgs satisfying gv,Ssr =rxd=0 is gs

=Î3s1−Î2d /4=−0.179 36. This is the minimal value ofugsu
required to produce wetting by the ordered phase at the in-

FIG. 2. The functionGsc0d for rx, r , r* (solid curve,r =0.23)
and for r* , r , rc (dashed curve,r =0.26). Here the surface cou-
pling constantgs=−0.35. The vertical dotted lines indicate the val-
ues ofc− andc+ for the caser =0.23.
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terface of a semi-infinite isotropic liquid and for the exis-
tence of a surface-ordered phase in the limitL→` of a thin
film. Larger values ofugsu are required to produce surface
ordering at temperaturesr . rx. It should be noted that, in the
present model, absent a linear term infsscd, the ordered
phase either completely wets the vapor-isotropic interface at
bulk coexistence or is not adsorbed at all.

Since the deviations of the midfilm order parameterc0
from 0 are exponentially small inL, the true phase boundary
between isotropic and surface-ordered states in a finite-
thickness film should show little dependence on thickness
over a wide range ofL, as noted in previous work[16,17].
Nonetheless, sinceFSsLd increases weakly withL for c0.0
[see Eq.(7)], at finite values ofL that phase boundary should
occur at slightly higher values ofr than predicted by the
asymptotic estimate described earlier, increasingly so asL
decreases.

B. Asymptotic behavior: Bulk-ordered phase

Next we examine the free energy of the bulk-ordered state
for large thicknessL and temperaturer , r* . Again, due to
the logarithmic divergence ofGsc0d asc0→c+, we find that
c0→c++Ose−asrdLd whereasrd is temperature dependent and
positive. In the neglect of exponentially small terms, the free
energyFB of the bulk-ordered phase obtained from Eq.(4)
separates into bulk and surface contributions given by

FBsL → `d = fbsc+dL + 2gv,B, s17d

where

gv,B = fsscsd + Î2E
c+

cs

dcffbscd − fbsc+dg1/2. s18d

Here the surface order parametercs=cssc+d is obtained from
Eq. (5) with midfilm valuec0=c+. The quantitygv,B can be
interpreted as the(smectic-ordering contribution to the) in-
terfacial tension between vapor and a semi-infinite bulk-
ordered phase. Note that forr . rx, the latter phase is meta-
stable. The termfbsc+dL in Eq. (17) gives the bulk free-
energy cost of forming a film of thicknessL from such a
metastable phase. The integral in Eq.(18), like that forgv,S,
can also be obtained analytically[28], with the result

gv,B =
gs

2
cs

2 +
cs

4Î3
scs

2 − c+
2 − 3/4dscs

2 + 2c+
2 − 3/2d1/2

+
3

16
c+sc+

2 − 1/2d −
Î3

2
sc+

2 − 3/4dsc+
2 − 1/4d

3lnFcs + scs
2 + 2c+

2 − 3/2d1/2

c+ + Î3sc+
2 − 1/2d1/2 G . s19d

Equating the asymptotic expressions Eqs.(13) and (17), an
approximate relation for the boundary between the surface-
ordered and bulk-ordered phases is

LS-B <
2sgv,S− gv,Bd

fbsc+d
. s20d

The corresponding asymptotic equation for the boundary be-
tween isotropic and bulk-ordered phases is

LI-B < −
2gv,B

fbsc+d
. s21d

The last two equations will be compared with the
numerically-determined solutions in the next section.

IV. RESULTS

The main results of this work are film phase diagrams and
their properties in terms of the thicknessL and temperaturer.
A representative phase diagram is shown in Fig. 3, for the
value of the surface coupling constantgs=−0.35. This exhib-
its isotropic, bulk-ordered and surface-ordered phases, sepa-
rated by first-order phase boundaries(solid lines) which meet
at a triple point. Except very close to the triple point, the
boundary between the isotropic and surface-ordered phases
is essentially independent ofL, as noted at the end of Sec.
III A. For this value of gs, the critical point between bulk-
ordered and surface-ordered phases mentioned in Sec. III is
not observed, as it is preempted by transitions from both
phases to the isotropic phase. That type of critical point is
found at values ofugsu slightly larger than 0.35[27], but the
resulting phase diagrams do not match any observed in con-
nection with layer-thinning, and hence, are not examined
here. Phase diagrams obtained at smaller values ofugsu are
qualitatively similar to that in Fig. 3, differing in that the
triple point moves to smallerr and largerL, and eventually
disappears asugsu approaches the value 0.179 36. For smaller
values ofugsu than this, only the bulk-ordered and isotropic
phases occur[15].

We find that Eqs.(20) and (21), with the interfacial ten-
sions given by Eqs.(15) and (19), accurately describe their
respective transition lines in the temperature range
rx, r , r* . (Note thatgv,B and c+ are undefined forr . r* .)

FIG. 3. Phase diagram forgs=−0.35. The solid lines are the
equilibrium phase boundaries between the indicated phases.
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The phase boundaries of Fig. 3 are reproduced in Fig. 4,
where the(numerically determined) continuation of the tran-
sition line between isotropic and bulk-ordered phases at tem-
peratures below the triple point is shown by the dashed
curve. Note that along this line both phases are metastable
relative to the surface-ordered phase. The results of Eqs.(20)
and(21) are essentially indistinguishable from those in Fig. 4
in the temperature rangerx, r , r* . The error in Eq.(20) at
r =r* is about 1.5% while that in Eq.(21) is only about
0.06%. Asr approaches the bulk transition temperaturerx,
c+→cx and fbsc+d→cx

2Dr /2 whereDr =r −rx. In this limit,
on approximatinggv,S and gv,B by their values at the bulk
transition temperature, Eqs.(20) and (21) both yield the
“Kelvin law” [4,17,18] L<sDrd−1. This asymptotic law very
well fits the isotropic to bulk-ordered transition for allr. A
best fit with a single power-law to the curve forLI-B in Fig. 4,
including both sides of the triple point, givesLI-B
=0.936sDrd−1.011, virtually indistinguishable from that curve.
The main reason for this agreement over a wide range is
cancellation between negative deviations from the
asymptotic relationfbsc+d<cx

2Dr /2 and negative deviations
of ugv,Bu from its value at the bulk transition.

On the other hand, we find that the transition line between
bulk-ordered and surface-ordered phases deviates signifi-
cantly from the asymptotic Kelvin relationLS-B~ sDrd−1. The
best-fit power law to the exact curve forLS-B in Fig. 4 over
the displayed range of thickness(i.e.,L,120) and below the
triple-point temperature, shown by the square symbols, is
LS-B=1.67sDrd−n, where n=0.761. When the fitting is ex-
tended to include theI-B curve above the triple point, the
exponent changes ton=0.781. These values ofn are close to
the range observed for layer-thinning transitions[1–3,11]. Of
course, the values of the exponentn in these fits increase if

the fitting is done over a larger range ofL values. Extending
the fit of LS-B to valuesL<1000 yields decay exponents
aroundn=0.80. We will discuss in Sec. V why it is plausible
to limit the fits of LS-B to the smaller range of thicknessL
shown in Figs. 3 and 4.

Scaling corrections to the Kelvin law are expected, among
other reasons, due to the growth of a complete-wetting layer
of the bulk ordered(smectic-A) phase at the vapor-isotropic
interface asr → rx [17,18]. In this limit

sgv,Sdx − sgv,Bdx = sgI,Bdx, s22d

where the subscriptx denotes bulk coexistence andgI,B.0 is
the interfacial tension between semi-infinite isotropic and
bulk-ordered phases. Since the latter is independent of the
surface coupling constantgs, the asymptotic relation Eq.(20)
becomes independent ofgs asDr →0, confirmed by numeri-
cal calculations. Following arguments by Evanset al. [18],
on using a leading-order expansion ofgn,S about its value at
the bulk transition, Eqs.(20) and (22) give

LS-B < 2l +
2sgI,Bdx

fbsc+d
, s23d

where l is the thickness of the ordered wetting layer at the
vapor-isotropic interface, which diverges proportional to
ulnsDrdu asDr →0. This can be evaluated analytically in the
present model, for example, from the distance between the
wall and the inflection point in thecszd profile [28]. None-
theless, as shown by the dotted curve in Fig. 4, Eq.(23) does
not fully account for the observed scaling corrections to the
Kelvin law for the surface-ordered to bulk-ordered transition,
especially on approaching the bulk spinodal temperaturer* ,
where the assumptions underlying the asymptoptic expan-
sion break down.

V. CONCLUDING REMARKS

The principal finding of this paper is the fact that the
transition between surface-ordered and bulk-ordered phases
is closely fit by an effective power-law relationL~ sDrd−n

with n as small as 0.76. Since the scaling law should asymp-
totically approach the Kelvin relationL~ sDrd−1, the value of
the exponentn increases with increase in the range ofL
values considered. However, it is plausible to truncate the fits
at the smaller range ofL shown in Figs. 3 and 4. As men-
tioned in Ref.[21], in this paper all distances are expressed
in units of the “zero-temperature” correlation lengthj. The
relation betweenj and the molecular length, and hence,
smectic layer spacing is uncertain: there have been(to our
knowledge: see also Ref.[29]) no fittings of Landau–de
Gennes theory to experiment for the properties of the
isotropic-smectic transition analogous to those done for
isotropic-nematic transitions[16,30]. In the latter cases, it is
typically found that the zero-temperature correlation lengthj
is a fraction—between 1/3 and 1/2—of the molecular length
[16,30]. If this also holds for the isotropic-smectic transition,
then L<120 corresponds to a thickness of 40–60 smectic
layers, at the high end of experimental studies[1–3,11] of
free-standing films with first-order layer-thinning transitions.

FIG. 4. Same as Fig. 3, but now showing the metastable phase
boundary(dashed curve) between isotropic and bulk-ordered phases
at values ofr below the triple point, which is accurately fit by the
Kelvin law L<sDrd−1.0 over its whole range. The best-fit power law
to the transition line between bulk-ordered and surface-ordered
phasesfL<sDrd−0.76g is indicated by the open squares, while the
dotted curve is the asymptotic approximation to this transition line
given by Eq.(23), which terminates at the superheating spinodal
temperaturer =r* .
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We have presented results for the particular value of the
surface coupling constantugsu=0.35, which we believe is at
the upper end of realistic values of this parameter. For
smaller values ofugsu, the I-S-B triple point moves to larger
thicknessL and smaller temperature differenceDr, which
also results in larger values of the effective exponentn. For
example, usinggs=−0.30, we findn to be in the range 0.77–
0.87, depending on theL range which is fitted. All these
results point to the fact that there is no unique value for the
layer-thinning exponentn, which is consistent with experi-
mental observations[1–3,9,11].

In this study, we have treated the film thicknessL as a
continuous variable. When strain effects are included, as in
earlier work based on de Gennes’ original model for a pres-
mectic film [7–11], the film free energy of both the bulk-
ordered and surface-ordered phases is expected to exhibit a
series of wells with minima at approximately integer mul-
tiples of the smectic layer spacing. The phase boundaries
between these “quantized” states and with the isotropic
phase should lie very close to the continuous phase bound-
aries displayed in Fig. 3.

As in other work[4,5], true layer-thinning transitions do
not necessarily coincide with the equilibrium transitions be-
tween bulk-ordered and surface-ordered(or isotropic) states
at a given thicknessL, which can also modify the observed
values of the effective exponentn. Mirantsev[4] has argued
that, following a transition from anN-layer bulk-like state to
the surface-ordered or quasi-smectic state, the film thins
down to ansN-nd-layer statesnù1d of lower free energy.
While plausible, this intermediate role of the quasismectic
state is unlikely in view of studies[11,12] showing that layer

thinning occurs by nucleation and growth of dislocation
loops between theN- and sN-nd-layer regions. Nonetheless,
the generic nature of the surface-ordered phase found in the
present and other models[4,5,15–17] under conditions of
sufficiently strong surface enhancement suggests that itspo-
tential (if not actual) presence could be a necessary condition
for the occurrence of layer-thinning transitions. A complete
investigation of layer thinning is expected to require analysis
of the competing kinetic pathways available to the system
near the “equilibrium” transitions studied here, as done in
previous work [9–11] based on the original second-order
presmectic model of de Gennes[14].

Finally, we call attention to the dependence of the bulk-
ordered free energy on thicknessL, as shown by Eqs.(4)
and, asymptotically, Eq.(17). In the latter limiting case, the
term linear inL exists due to the metastability of the bulk-
ordered phase, depends only on the degree of overheating(as
postulated in Ref.[11]), and has no connection to the menis-
cus effects invoked in other work on layer-thinning based on
de Gennes’ presmectic model in the case of systems under-
going second-ordersmectic-nematic transitions[9,13]. Due
to the significant nonzero values ofc+, Eq. (17) has a stron-
ger dependence onL than the free energy of systems under-
going second-order transitions, and hence, should be suffi-
cient (in the absence of meniscus effects) to provide the
major “driving force” in dislocation-nucleation mechanisms
of layer-thinning transitions.

ACKNOWLEDGMENT

This study was supported by the Natural Sciences and
Engineering Research Council(Canada).

[1] T. Stoebe, P. Mach, and C. C. Huang, Phys. Rev. Lett.73,
1384 (1994).

[2] P. M. Johnson, P. Mach, E. D. Wedell, L. Lintgen, M. Neubert,
and C. C. Huang, Phys. Rev. E55, 4386(1997).

[3] S. Pankratz, P. M. Johnson, H. T. Nguyen, and C. C. Huang,
Phys. Rev. E58, R2721(1998).

[4] L. V. Mirantsev, Phys. Lett. A205, 412(1995); Liq. Cryst. 20,
417 (1996).

[5] Y. Martinez-Raton, A. M. Somoza, L. Mederos, and D. E.
Sullivan, Faraday Discuss.104, 111 (1996); Phys. Rev. E55,
2030 (1997).

[6] T. Kranjc and S. Zumer, J. Chem. Phys.105, 5242(1996).
[7] E. E. Gorodetskii, E. S. Pikina, and V. E. Podnek, JETP88, 35

(1999).
[8] A. N. Shalaginov and D. E. Sullivan, Phys. Rev. E63, 031704

(2001).
[9] F. Picano, P. Oswald, and E. Kats, Phys. Rev. E63, 021705

(2001).
[10] A. N. Shalaginov and D. E. Sullivan, Phys. Rev. E65, 031715

(2002).
[11] S. Pankratz, P. M. Johnson, R. Holyst, and C. C. Huang, Phys.

Rev. E 60, R2456(1999).
[12] S. Pankratz, P. M. Johnson, A. Paulson, and C. C. Huang,

Phys. Rev. E61, 6689(2000).

[13] A. Poniewierski, P. Oswald, and R. Holyst, Langmuir18, 1511
(2002).

[14] P. G. deGennes, Langmuir6, 1448(1990).
[15] A. Weinstein and S. A. Safran, Europhys. Lett.42, 61 (1998).
[16] P. Sheng, Phys. Rev. A26, 1610(1982).
[17] A. Poniewierski and T. J. Sluckin, Liq. Cryst.2, 281 (1987).
[18] R. Evans, U. Marini Bettolo Marconi, and P. Tarazona, J.

Chem. Phys.84, 2376(1986).
[19] P. G. deGennes and J. Prost,The Physics of Liquid Crystals

(Clarendon, Oxford, 1993), p. 508.
[20] H. Nakanishi and M. E. Fisher, J. Chem. Phys.78, 3279

(1983).
[21] In particular, the normal distancez through the film is taken to

be in units ofÎgC/b;j, which can be considered a “zero-
temperature” correlation length.

[22] K. T. Chambers and C. J. Radke, inInterfacial Phenomena in
Petroleum Recovery, edited by N. R. Morrow(Dekker, New
York, 1991), p. 191.

[23] Y. Martinez, A. M. Somoza, L. Mederos, and D. E. Sullivan,
Phys. Rev. E53, 2466(1996).

[24] D. Bhatt, J. Newman and C. J. Radke, J. Phys. Chem. B106,
6529 (2002).

[25] The integralGsc0d was evaluated numerically, first transform-
ing to the integration variablex=sc2−c0

2d1/2 to remove the

FIRST-ORDER LANDAU–DE GENNES MODEL FOR… PHYSICAL REVIEW E 70, 011707(2004)

011707-7



apparent singularity atc→c0. The logarithmically divergent
contributions atc0→0, c− andc+ were extracted analytically
and the residual integrals were evaluated by an adaptive Rom-
berg extrapolation technique[20,26].

[26] W. H. Presset al., Numerical Recipes(Cambridge University
Press, Cambridge, 1986), Chap. 4.

[27] The triple point in Fig. 3 occurs at a valuer =0.275 37, which

lies between the spinodal temperaturer* =1/4 and thecritical
temperaturerc<0.30 for this case.

[28] R. Lipowski and W. Speth, Phys. Rev. B28, 3983(1983).
[29] P. K. Mukherjee, H. Pleiner, and H. R. Brand, Eur. Phys. J. E

4, 293 (2001).
[30] Introduction to Liquid Crystals, edited by E. B. Priestly, P. J.

Wojtowicz, and P. Sheng(Plenum, New York, 1975), Chap. 10.

D. E. SULLIVAN AND A. N. SHALAGINOV PHYSICAL REVIEW E 70, 011707(2004)

011707-8


