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First-order Landau—de Gennes model for layer thinning in presmectic free-standing films
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A Landau theory for surface enhanced ordering in free-standing sn#edilims is described, based on a
generalization of de Gennes’s “presmectic” model to systems which undergo a first-order smectic-isotropic
transition in bulk. As found in related work on phase transitions in thin films, the system exhibits three phases,
an isotropic liquid, a bulk-like ordere@mecticA) phase, and a surface-ordergguasismecticy phase. Over
much of its range, the temperature-thickness boundary between the bulk-ordered and surface-ordered phases is
effectively characterized by a power-law relation similar to those observed for layer-thinning transitions in
overheated free-standing smecfidilms.
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I. INTRODUCTION confinement effects on the first-order nematic-isotropic tran-

Layer-thinning transitions in overheated free-standingSition- The study in Ref[17] is important for relating the
films of certain smectié liquid crystals were discovered Predicted thin-film phase boundaries to the interplay of cap-
nearly ten years ago by Huargg al. [1-3]. Several mean- illary condensation and wetting phenomena. In the presence
field theories for these transitions have been describe@f surface-enhanced ordering, these studies all find that three
[4-10. Common features of all these theories are the existypes of phases can occur in a confined film in a range of
tence of enhanced smect#cerdering at the free surfaces of temperaturesT above the bulk transition temperature, de-
a film and the fact that thinning occurs when the smectidiotedT,: (1) a mainly isotropic state with little or no order-
ordering in the interior of a film becomes sufficiently weak. ing at both the interfaces and interior of the fil@) a “bulk-
Apart from details of the models used, the main difference®rdered” state which exhibits significant ordering throughout
between the various theories are in the description of théhe film; and(3) a “surface-ordered” state in which the film
kinetic pathways by which layer thinning occurs, i.e., interfaces are wet by the ordered phase while the middle of
whether this is by uniform squeezing-out of the melted intethe film is very weakly ordered. In the context of free-
rior [4—8] or via nucleation of dislocation loops between standing smectic films, the latter has been called a “quasis-
domains of differing thicknesf9,10] (a scenario supported mectic” state[4], although this behavior probably is rather
by experimental studiegl1,12). Many of the previous the- generic for a confined film with a sufficient degree of
oretical studies of layer-thinning transitiofig-11,13 have  surface-enhanced ordering. The transition between states
been based on de Gennes’ model of “presmectic” ordering i&nd(2) in a film of finite thicknesd. is the analog of capil-
thin films [14]. Up to now, all of the latter studies use an lary condensation between gas-like and liquid-like states in a
expansion of the bulk free-energy density up to at most quarconfined geometry18]. The phase boundary between these
tic order in the smectic order parameter, which is more apstates, in terms of temperature and thickness, is described
propriate to a system undergoingsacond-ordersmectic- ~ asymptotically by the Kelvin relatio o AT™* where AT
nematic phase transition. In contrast, the majority of=T—T,. For sufficiently smalAT, the surface-ordered phase
experimental studies of layer-thinning transitions have bee3) becomes more stable than the isotropic phase and the
done on systems exhibiting first-order smectic-isotropic tran{1)~(2) transition is preempted by th@)~(3) transition. Al-
sitions in bulk[1-3,11,12. In this paper we extend our pre- though asymptoticallythis phase boundary also obeys the
vious studies[8,10], based on a modified version of de Kelvin relation, over a wide range we find that it is charac-
Gennes’ presmectic theory which included a quartic term irferized by an effective power lalwv AT with v as small as
the bulk free-energy density and a quadratather than lin-  0.76, which is consistent with tHe-T relations observed in
ean term in the surface part of the free energy, by adding dayer-thinning transitiong1-3,13. This finding, along with
sixth-order term to the bulk free-energy density so as to bglemonstrating the “universal” character of the quasismectic
applicable to systems with first-order bulk transitions. Herestate and its connections to other confinement-induced tran-
we limit the analysis to determining the different phases andgitions, are the main points of this paper.
their “equilibrium” boundaries exhibited by a thin presmectic
film in the absence of layer strain effects.

The theory discussed here is closely related to one de-
scribed a few years ago by Weinstein and SaftEs) in the As in previous work[7-11,13 employing de Gennes’
context of freezing transitions in confined liquid films. Ear- presmectic mode[14], a free-standing smecti-film is
lier work employing a similar formalisnfil6,17 examined modeled by an infinite liquid slab parallel to tkey) plane
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with free liquid-vapor interfaces at=+L/2. The degree of b, g, andC in Egs.(1) and(2) can be set equal to unif21],
smectic order in the film is described by the order parameteas adopted from now on. This leaves the model depending on
#(2)=0, representing the amplitude of periodic densitytwo parameters, the temperature variabland the surface
modulations in the normat direction. The model neglects coupling constangs.
any explicit coupling to a nematic-like orientational order Euler-Lagrange equations determining the order-
parameter, on the assumptifdd] that any such order is fully parameter profile)(z) along with the surface valug(xL/2)
saturated as soon as it develops. As stated by de G¢ifies can be obtained by functional minimization of Hg). We
such a model should be applicable to systems exhibiting eiwill omit these equations here, and simply state that on using
ther a nematic or isotropic phase in bulk. As mentioned inthese equations and the symmetry conditiir-z) = y(2),
Sec. |, here we will neglect strain effects associated witlEq. (1) becomeq16,17:
local distortions of the smectic layer thickness. This is justi- Ve
fied by the_ e_xpec_:tation, indicated b)_/ previous wrk8,14, F = (o)L + 2 () + Z\EJ du [fo(4) — Fol ) V2,
that the minima in the free energy lie close to states of zero o
strain. The Landau—de Gennes free energy per unit area of 4)
the film, accounting for the effects of smectic ordering, is
then given by wherey,= (z=0) is the order parameter in the midplane of
L2 ) the film while ys= y(z=+L/2) is the order parameter at the
C/(dy : - : .
E =J dz|:fb(¢) + _<_) } +f{p(L12)]+ f{ (- LI2)]. film surfaces. In this formf- can be considered a function of
L2 2\ dz the three variables/,, 1, and film thicknesd., for given
(1) model parameters andg.. Partial minimization of in Eq.
(4) with respect toy and i, respectively, using Eq.3),
As appropriate for a system undergoing a first-order smecticyields the relations
isotropic transition, the bulk free-energy density(y) is

given by[19]: V2 [fo(1he) = Fu(h) 12 = = g, (5)
d
_r b 4.9 56 an

o) = S0P = g+ v, @ L=G(%), (62)
whereb andg are positive constants. As usual, the variable Where
is taken to be linear in the relative temperature difference, _ (¥ dy
i.e.,rcT=Ty, whereTy is a supercooling spinodal tempera- G(ihp) =2 : ; 7 (6b)
ture. In the following, we will often simply calt the “tem- o [Fu(4) — fo(to)]

perature.” Our model for the contributioiy(y)) to the free  rpege relations can also be obtained from the original Euler-
energy, which account; for the smectic ordering effects Of_agrange equations faf(z). If one considers Eq5) as de-
the film surfaces on adjacent molecules{8sL0): termining the surface order parametgrin terms of the mid-
9 film value i, then Egs.(6a) and (6b) determineyy, for a
o) = =92, (3)  given thicknesd., wherey= (1) in the upper limit of the
2 integral defining the functio(¢y) in Eq. (6b). In view of
wheregs is a surface coupling constant. This model neglectshe latter equations, thietal derivative ofF with respect to
a possible contribution té in which is linear in [8,13. By  the film thicknesd. (at fixedr andgy) is given by

analogy with related studies, e.g., on Ising-model surfaces dE [ oF
[20], a linear term infg would be associated withxternal —= (—) =fu(o). (7)
fields such as due to confining walls acting on the film, ex- dL \dL Yobs

pected to be absent in a free-standing film, while the qua-
dratic form adopted in Eq(3) accounts for the effects of
modified intermolecular pair interactiong.g., “missing
neighbors) near the surface. In other contex®0], g5 has

An alternative expression for the equilibrium free energy
which can be obtained using the Euler-Lagrange equations
for ¢/(z), following an approach described in RE8], is

been called the “surface-enhancement field,” which favors L2 Ifp(¥) If ()
local ordering at the interfaces whem<0, a condition F:f dz 2fs(y) — o i * 20(hs) ~ s s
which is assumed from now on. The form fin Eq. (3) is 0 s
simpler than that used in RgfL5], which also neglected the (8)

linear term. Along with the neglect of nematic ordering terms
elsewhere i, the form of the surface free energy assumes U
that any explicit orientational anchoring effects can be elimi- 1 2

nated in terms of the smectic order paramaferThis is F:fo dzy*(2)[; - 3¥4(2)]- 9)
reasonable under the conditions that molecules at the surface

remain homeotropically aligne@e., normal to the surfage  Although not generally as useful as E@), this indicates
compatible with smectié ordering parallel to the surface that the free energ¥ is necessarily positive if{(z) <v3/4
[9,14]. By appropriate scaling d¥, «, andz, the coefficients for all z

sing the forms of, andfg in Egs.(2) and(3), this becomes
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Before discussing the solutions of E@S), (6a), and(6b),
we point out some relevant features of the bulk free-energy
densityf,(¢). Close to the bulk isotropic-smectic transition,
this has a characteristic “double well” shape, having one
minimum aty=0 and another at=,, where(for b=g=1):

o= (1+\1-4n)2. (10)

The bulk phase transition takes place when the free-energy
minima at=0 and , are equal, which occurs when the
temperaturer=3/16=r,, in which casey,=(3/4)Y?= y,.

For r>r,, the global minimum off,(¢) is at =0, but the
metastable minimum ag, persists up to a superheating spin-
odal temperature.=1/4. In theranger,<r<r.«, there is
another positive value off, denotedy._, which satisfies FIG. 1. Schematic graphical solution of E@) for r,<r<r.

QUL or -gw

fo()=fu (). This is given by and 0< yu<y_. The solid curve is the functiog2[ fy(¢)—fu(¢o)]
while the dashed straight line represents the functiggs—for a

ﬁ =(1-2V1-4)/2, (11 value of the parametey;<0 which produces three roots of E&).

which approaches the isotropic valye0 whenr —r,. ry<r<r. and for 0<yy<y_. For the values of and g

considered in this case, the graph exhibits three rootgifor
For the same and for sufficiently largetsmallep values of
lad, only the largestsmallest root for i remains. However,

Due to the absence of a linear termfify), Eq.(3), itcan it can be shown that the two smaller roots farin Fig. 1 as
be shown that the theory outlined above always has a triviaivell as the single smalf root obtained for small values of
solution y(z)=0 for all z [8], corresponding to an isotropic |gs correspond to unstable states. This is because those roots
liquid state(denoted ) of the film with no smectic ordering Obey ¥s< i, < 4,=3/4, and hencey(z) < ¢, for all z, giv-
whatsoever. According to any of the E@$), (4), or (9), the  ing positive values of the film free energy(hence, unstable
free energyF =F, of this film state is zero, reflecting the fact relative to the isotropic stat@ccording to the argument fol-
that F only accounts for the effects of smectic ordering. Inlowing Eq.(9). When the temperatune>r., triple roots for
reality, such an isotropic free-standing film also exhibits athe surface order parametg can also occur for appropriate
continuous density variation between vapor and liquid, and/alues of the surface coupling constaggtand sufficiently
hence, has a positive free energy per unit area in excess small ¢, but one can again show that only the largest of
that in the complete absence of the film, approximately equasuch roots produces a stable film state hawingO0.
to 2y, wherey,, is the (isotropig liquid-vapor interfacial Due to the integrals involvingfy(#) — fo(40)]¥2 in Egs.
tension. This renders such a film metasta@®2,23. In ad-  (4) and (6b), solutions with - <iy<i. and s>, are
dition, such an isotropic film should be unstable with respecforbidden. Wheny,> i, graphical constructions analogous
to rupturing due to capillary-wave fluctuatiof4]. It is pre-  to that in Fig. 1 show that there is only one mathematical
sumed that smectic ordering diminishes the fluctuationgoot for i/,
which cause that instability. Having determined the unique root faf for a given

In the overheated temperature regimer,, nontrivial so- ~ midfilm order paramete),, the solution of the theory is
lutions for ¢{(z) exist provided the surface-enhancement fieldcompleted by solving Eqg6a) and (6b) to obtain ¢, for a
gs< 0 (in practice, as shown later, fgg less than some finite given value ofL. Under the conditions that, for alk, the
negative threshold As in the closely related work of Ref. corresponding surface order parameter satisfigs ¢, the
[15], for r,<r<r., these solutions fall into two categories functionG(y) has the typical behavior far<r <r. shown
which can be distinguished by the values of the surface anbly the solid curve in Fig. 2. It diverges logarithmically as
midfilm order parametersgs and o (&) s>, and ¥y Yo— 0, Yo— - from below andyy— i, from above[25],
~ i, representing a bulk-ordered stétenotedB) through-  and, as mentioned earlier, is undefined far< o < . For
out the film;(b) s>, but =0, representing a surface- sufficiently small thickness, Fig. 2 and Eq.(6a) indicate
ordered statgdenotedS) in which the interfaces are wet by that the only nontrivial solution hagy,> ¢, corresponding
the ordered phase while the middle of the film is practicallyto a bulk-ordered state. This phase is stable with respect to
disordered. the isotropic state if its free ener@y= Fg satisfieFz<0. At

To determine the nontrivial solutions, we begin with Eq. larger values oL, greater than the minimum i6(¢,) oc-
(5), which clearly shows that such solutions are obtainedcurring for 0< y<y._, there are three possible nontrivial
only if gs<0. In practice, the solutions of E¢b) are found  solutions for the mid-film order parameték. However, it
by squaring it, which leadpusing f, as given by Eq(2)] to  can be shown that the intermediate solution the branch of
a cubic equation for the variablgéﬁ in terms of 4, whose  G(¢) which diverges asj,— ¢-) always has a higher free
roots are obtained analytically. The nature of those roots caanergyF than both of the other two solutions. The solution
be seen graphically, on plotting both sides of E5). Arep-  with ¢y> ¢, describes, as before, a bulk-ordered phase,
resentative case is shown in Fig. 1, in the temperature rangehile that with #,~0 corresponds to a surface-ordered

Ill. SOLUTION OF THEORY
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greater than a minimal value 0.179 36, as discussed in the
following subsection.

A. Asymptotic behavior: Surface-ordered phase

It turns out that many qualitative as well as quantitative
features of the film phase behavior can be deduced from
analytic studies of the asymptotic limit— . In this limit,
the two surfaces of the film are decoupled. First, considering
the surface-ordered state in a thin film, we will show that it is
closely related to the wetting of a single surfdbere repre-
senting a liquid vapor interfagdn a semi-infinite system
[16—18. This connection follows by considering the condi-

| | | tions for existence of the surface-ordered phase at arbitrarily
0 0.25 y 05 0.75 large thicknessL. Due to the logarithmic divergence of
) v, G(i) asyp— 0, the asymptotic solution of Eg6a) is [17]:

. ) _ o= e-\’FL/ZI (12)
FIG. 2. The functionG(yyg) for ry,<<r <r. (solid curve,r=0.23
and forr.<r<r. (dashed curver=0.26. Here the surface cou- (QOn neglecting exponentially small terms, as well as using the
pling constanigs=-0.35. The vertical dotted lines indicate the val- fact thatf, (i) = o y2 for small i, the termf (o)L in the free
ues ofy andy, for the case=0.23. energyFs of the surface-ordered phase obtained from(&y.

phase. The free energies of these phases must be compafé@ be neglected and that free energy becomes
with each other and with the isotropic phase=0 to deter- (s
mine which phase is most stable. It fO||OWS from E0d). that, Fo(L — ) = 2f (i) + Z\HZJ dy fﬁlz(lﬂ) =2y,
sincefy(i,) > f,(0) in the overheated regime, the free energy 0
of the bulk-ordered state increases with thicknesmore (13)
rapidly than that of the surface-ordered state, and hence, the
latter is always more stable than the former at sufficientlyHere we have indicated that, in this limig is precisely
largeL. Physically, this just reflects the increasing bulk free-twice the (smectic-ordering contribution to thenterfacial
energy cost associated with the teffig(io)L =~ fy(¢,)L in  tensiony, s between “vapor” and a semi-infinitsurface-
Eq. (4). orde_zredisotropic liquid. Under the same approxima_ti_on_, i_.e.,
At temperatures greater than the spinodal value the — Settingyo=0, Eq.(5) for ys reduces to that for a semi-infinite
“forbidden” zoney. < i, < . vanishes. For a narrow range iSotropic liquid. The nontrivial solution of this equation for
r>r., a remnant of the previous behavior remains, produc#s™> ¥ is
ing a finite maximum irG(,) as shown by the dashed curve _ 2_ 12172
in Fig. 2. This persists up to some temperature denoged 5= YL+ [1+ (g5 = NIV (14)
The value ofr; and height of the maximum i&(;,) are only  Notice this requires thag§>r—rx. Such a surface-ordered
weakly dependent on the values of the surface coupling corstate in the semi-infinite system could still be metastable
stantgs which yield this behavior. In this case, a first-order relative to the completely isotropic staigithout any surface
transition between bulk- and surface-ordered phases still osrdering. To check this we need the free energy from Eq.
curs at a value of between the minimum and maximum in (13), which can be found analytically in the current model
G(ip). Forr>r., the maximum inG(yy) disappears and this [28]:
function decreases monotonically with increasiftg In this
case there is no distinction_ betvygen bl_JIk-ordered and Yo.5= g—séﬂg‘*l{gs(lﬂf—ﬁ@*'\'?lﬁi
surface-ordered phases. The film critical point at some tem-
peraturer, has been noted in previous wofk6,17). 5o 2
We remark on some differences from the behavior of the + \E(r - rx)m(w)} , (15)
liquid-crystal models studied in Ref{;{;&lﬂ, which were 3r—y2
based on a surface free eneifgyty) =g~/ 2 —hgi, with both ) . .
0s,hs=0. These models do not exhibit a completely isotropicWlth S“ff"?‘ce _or(_:Ier paramet@g_ given by Eq-@‘”- In _th|s
asymptotic limit, the transition between isotropic and

state withy(z)=0 for all z. Rather, all film states have some

surface-ordered states occurs whgr=0. In the particular
degree of surface-induced ordering. The analog of the

Rase ofr= ry, i.e., at the bulk transition temperature, the last

present isotropic to surface-ordered transifittre boundary-

layer transition of Ref[16]) is one is which the surface order two equations givénoting thatgs <0):
parameterny undergoes a large jump between two nonzero Yodr =1 = g(gs 293/\3 + \3/8) (16)
values while the midfilm order parametgp~0 changes

little. In Sheng’s mode[16], which hasg=0, this transiton The negative root forgs satisfying vy, s(r=r,)=0 is gs
disappears wheh, becomes sufficiently large. In contrast, in =V3(1-12)/4=-0.179 36. This is the minimal value ¢

the present model this transition persists for all valuelggf required to produce wetting by the ordered phase at the in-
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terface of a semi-infinite isotropic liquid and for the exis- 120
tence of a surface-ordered phase in the limit  of a thin -
film. Larger values ofig{ are required to produce surface 100
ordering at temperatures>r,. It should be noted that, in the -
present model, absent a linear term fifi), the ordered 80—
phase either completely wets the vapor-isotropic interface a L
bulk coexistence or is not adsorbed at all. L 60
Since the deviations of the midfilm order parameigr
from O are exponentially small ib, the true phase boundary
between isotropic and surface-ordered states in a finite-
thickness film should show little dependence on thickness
over a wide range ok, as noted in previous workl6,17.

surface-ordered isotropic

20—

Nonetheless, sincEgL) increases weakly with for ;>0 " bulk-ordered

[see Eq(7)], at finite values of. that phase boundary should T R Y YRR Yy S v s ey e
occur at slightly higher values af than predicted by the

asymptotic estimate described earlier, increasingly sh as r-r

decreases.

FIG. 3. Phase diagram fay;=-0.35. The solid lines are the

equilibrium phase boundaries between the indicated phases.
B. Asymptotic behavior: Bulk-ordered phase

Next we examine the free energy of the bulk-ordered state Lew~ 2(%y,5~ Yo8)
for large thicknesd and temperature<r.. Again, due to SB o)
the logarithmic divergence @(i) as yo— ¢, we find that i . )
o — P +0(e20L) wherea(r) is temperature dependent and The corresponding asymptotic equation for the boundary be-

positive. In the neglect of exponentially small terms, the fredWeen isotropic and bulk-ordered phases is

(20)

energyFg of the bulk-ordered phase obtained from K4 29, 5

separates into bulk and surface contributions given by Lig=- ﬁ (21)
b\ ¥+

Fg(L — ) = fy(¢)L + 2y, g, (17) The last two equations will be compared with the
numerically-determined solutions in the next section.
where
IV. RESULTS
s . . . .
o= fih) + \Ef dulfo(p) - fu(w M2 (18) The main results of this work are film phase diagrams and
” s . their properties in terms of the thickndssnd temperature

A representative phase diagram is shown in Fig. 3, for the

Here the surface order parameter y(i4,) is obtained from  Value of the surface coupling constayt=-0.35. This exhib-

Eq. (5) with midfilm value g=1,. The quantityy, 5 can be its isotropic, bulk-ordered and surface-ordered phases, sepa-
interpreted as thésmectic-ordering contribution to thén-  rated by first-order phase boundarisslid lines which meet
terfacial tension between vapor and a semi-infinite bulk-2t @ triple point. Except very close to the triple point, the
ordered phase. Note that forr,, the latter phase is meta- boundary between the isotropic and surface-ordered phases
stable. The termf,(4.)L in Eq. (17) gives the bulk free- is essentially independent &f as noted at the end of Sec.
energy cost of forming a film of thickneds from such a Il A. For this value ofgg, the critical point between bulk-
metastable phase. The integral in i), like that for y, ordered and surface-ordered phases mentioned in Sec. Il is

can also be obtained analytica[igg], with the result not observed, as it is preempted by transitions from both
phases to the isotropic phase. That type of critical point is

found at values ofgg slightly larger than 0.3%27], but the

Yo5= g—S¢§ + ‘pf_(wg — 2 = 318) (YR + 207 - 3122 resulting phase diagrams do not match any observed in con-
2 443 nection with layer-thinning, and hence, are not examined
3 3 here. Phase diagrams obtained at smaller valudggofire
+ (PP -1/2) - \“_(lﬁ_ 3/4)(y? - 1/4) qualitatively similar to that in Fig. 3, differing in that the
16 2 triple point moves to smaller and largerl, and eventually
+ (R + 207 - 3/2)112 disappears ag| approaches the value 0.179 36. qu smal!er
XIn s (%F i 1)/2 . (19)  values of|g4 than this, only the bulk-ordered and isotropic
Y+ \3(yf - 112) phases occufl5].

We find that Eqs(20) and (21), with the interfacial ten-
Equating the asymptotic expressions E(G3) and(17), an  sions given by Eqs(15) and(19), accurately describe their
approximate relation for the boundary between the surfacerespective transition lines in the temperature range
ordered and bulk-ordered phases is ry<r<r.. (Note thaty, g and ¢, are undefined for >r..)

011707-5



D. E. SULLIVAN AND A. N. SHALAGINOV PHYSICAL REVIEW E 70, 011707(2004

120

T the fitting is done over a larger range lofvalues. Extending
' the fit of Lgg to valuesL=1000 yields decay exponents
100 | I". aroundr=0.80. We will discuss in Sec. V why it is plausible
i to limit the fits of Lgg to the smaller range of thicknegs
4 . . shown in Figs. 3 and 4.
“\ surface-ordered isotropic Scaling c?)rrections to the Kelvin law are expected, among
\ other reasons, due to the growth of a complete-wetting layer

| of the bulk orderedsmecticA) phase at the vapor-isotropic
w0l 5\ interface ag —r, [17,18. In this limit

AN (Yo.9%x~ (1u8)x= (M 8)xs (22
20— tes

i where the subscriptdenotes bulk coexistence ampgs >0 is
[ bulk-ordered the interfacial tension between semi-infinite isotropic and
0 002 004 006 008 01 012 014 0l6 bulk-ordered phases. Since the latter is independent of the
surface coupling constagt, the asymptotic relation Eg20)
r-r, becomes independent gf asAr — 0, confirmed by numeri-
, _ cal calculations. Following arguments by Eveetsal. [18],
FIG. 4. Same as Fig. 3, but now showing the metastable phasgy, \,sing a leading-order expansionqgfs about its value at
boundary(dashed curvebetween isotropic and bulk-ordered phasesthe bulk transition, Eqg20) and (22) giVe
at values ofr below the triple point, which is accurately fit by the ' ’
Kelvin law L= (Ar)~1% over its whole range. The best-fit power law 2(v g«
to the transition line between bulk-ordered and surface-ordered Lsg=2l +f—'. (23
phaseq L~ (Ar)"979] is indicated by the open squares, while the b(14:)

dotted curve is the asymptotic approximation to this transition linewherel is the thickness of the ordered wetting layer at the
given by Eq.(23), which terminates at the superheating spinodalvapor-isotropic interface, which diverges proportional to
temperaturg =r.. lIn(Ar)| asAr—0. This can be evaluated analytically in the
The phase boundaries of Fig. 3 are reproduced in Fig. @resent modgl, for _example,_ from the disf[ance between the
where thetnumerically determinexcontinuation of the tran-  Wall @nd the inflection point in the/(z) profile [28]. None-
sition line between isotropic and bulk-ordered phases at tenil€l€ss, as shown by the dotted curve in Fig. 4,(28) does
peratures below the triple point is shown by the dashedot fully account for the observed scaling corrections to the
curve. Note that a|0ng this line both phases are metastabl‘éewin law for the surface-ordered to bulk-ordered transition,
relative to the surface-ordered phase. The results of @qs. €specially on approaching the bulk spinodal temperature
and(21) are essentially indistinguishable from those in Fig. 4where the assumptions underlying the asymptoptic expan-
in the temperature rangg<r <r.. The error in Eq(20) at  sion break down.

r=r. is about 1.5% while that in Eqg21) is only about

0.06%. Asr approaches the bulk transition temperatuge

W, — h and fi(h) — yY2Ar/2 whereAr=r -r,. In this limit, V. CONCLUDING REMARKS

on approximatingy, s and v, g by their values at the bulk  The principal finding of this paper is the fact that the
transition temperature, Eq$20) and (21) both yield the

transition between surface-ordered and bulk-ordered phases
“Kelvin law” [4,17,18 L= (Ar)™. This asymptotic law very s closely fit by an effective power-law relatione (Ar)™
well fits the isotropic to bulk-ordered transition for all A with v as small as 0.76. Since the scaling law should asymp-
best fit with a single power-law to the curve fiorg in Fig. 4, totically approach the Kelvin relatione (Ar) ™, the value of
including both sides of the triple point, gives; s  the exponentr increases with increase in the range Lof
=0.936Ar) 1% virtually indistinguishable from that curve.

values considered. However, it is plausible to truncate the fits
The main reason for this agreement over a wide range igt the smaller range df shown in Figs. 3 and 4. As men-

cancellation between negative deviations from thetioned in Ref.[21], in this paper all distances are expressed
asymptotic relatiorfy(i4,) = yZAr/2 and negative deviations in units of the “zero-temperature” correlation lengthThe
of |,g| from its value at the bulk transition. relation between¢ and the molecular length, and hence,
On the other hand, we find that the transition line betweersmectic layer spacing is uncertain: there have bgerour
bulk-ordered and surface-ordered phases deviates signiftnowledge: see also Ref29]) no fittings of Landau—de
cantly from the asymptotic Kelvin relatidns g (Ar)™t. The  Gennes theory to experiment for the properties of the
best-fit power law to the exact curve fbgg in Fig. 4 over  isotropic-smectic transition analogous to those done for
the displayed range of thickne§se., L <120) and below the isotropic-nematic transitiond6,37. In the latter cases, it is
triple-point temperature, shown by the square symbols, isypically found that the zero-temperature correlation lerggth
Lsg=1.67Ar)"", where v=0.761. When the fitting is ex- is a fraction—between 1/3 and 1/2—of the molecular length
tended to include thé-B curve above the triple point, the [16,30. If this also holds for the isotropic-smectic transition,
exponent changes t0=0.781. These values ofare close to thenL~120 corresponds to a thickness of 40—-60 smectic
the range observed for layer-thinning transitiphs3,17. Of  layers, at the high end of experimental studj#s3,1] of
course, the values of the exponenin these fits increase if free-standing films with first-order layer-thinning transitions.
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We have presented results for the particular value of theéhinning occurs by nucleation and growth of dislocation
surface coupling constamg=0.35, which we believe is at loops between th&l- and (N-n)-layer regions. Nonetheless,
the upper end of realistic values of this parameter. Fothe generic nature of the surface-ordered phase found in the
smaller values ofgg, the 1-S-B triple point moves to larger present and other mode[g,5,15-17 under conditions of
thicknessL and smaller temperature differende’, which  sufficiently strong surface enhancement suggests thabits
also results in larger values of the effective exponerftor  tential (if not actua) presence could be a necessary condition
example, usings=-0.30, we findv to be in the range 0.77— for the occurrence of layer-thinning transitions. A complete
0.87, depending on the range which is fitted. All these investigation of layer thinning is expected to require analysis
results point to the fact that there is no unique value for theof the competing kinetic pathways available to the system
layer-thinning exponeny, which is consistent with experi- near the “equilibrium” transitions studied here, as done in
mental observationgl-3,9,11. previous work[9-11] based on the original second-order

In this study, we have treated the film thicknds@s a  presmectic model of de Genng4].
continuous variable. When strain effects are included, as in Finally, we call attention to the dependence of the bulk-
earlier work based on de Gennes’ original model for a preserdered free energy on thickneks as shown by Eqs(4)
mectic film [7-11], the film free energy of both the bulk- and, asymptotically, Eq17). In the latter limiting case, the
ordered and surface-ordered phases is expected to exhibitterm linear inL exists due to the metastability of the bulk-
series of wells with minima at approximately integer mul- ordered phase, depends only on the degree of overhgasng
tiples of the smectic layer spacing. The phase boundariggostulated in Ref{11]), and has no connection to the menis-
between these “quantized” states and with the isotropicus effects invoked in other work on layer-thinning based on
phase should lie very close to the continuous phase boundle Gennes’ presmectic model in the case of systems under-
aries displayed in Fig. 3. going second-ordersmectic-nematic transition®,13. Due

As in other work[4,5], true layer-thinning transitions do to the significant nonzero values ¢f, Eqg.(17) has a stron-
not necessarily coincide with the equilibrium transitions be-ger dependence dnthan the free energy of systems under-
tween bulk-ordered and surface-ordefed isotropig states going second-order transitions, and hence, should be suffi-
at a given thicknesg, which can also modify the observed cient (in the absence of meniscus effgcte provide the
values of the effective exponent Mirantsev[4] has argued major “driving force” in dislocation-nucleation mechanisms
that, following a transition from a-layer bulk-like state to  of layer-thinning transitions.
the surface-ordered or quasi-smectic state, the film thins
down to an(N-n)-layer state(n=1) of lower free energy.
While plausible, this intermediate role of the quasismectic This study was supported by the Natural Sciences and
state is unlikely in view of studie 1,12 showing that layer Engineering Research Coun¢@anada
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